Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

Пермский национальный исследовательский политехнический университет

УТВЕРЖДАЮ

Проректор по образовательной деятельности

А.Б. Петроченков « 18 » апреля 20 23 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Дисциплина:	Коллоидная химия
	(наименование)
Форма обучения:	очная
	(очная/очно-заочная/заочная)
Уровень высшего образова	ания: бакалавриат
	(бакалавриат/специалитет/магистратура)
Общая трудоёмкость:	108 (3)
	(часы (ЗЕ))
Направление подготовки:	18.03.01 Химическая технология
	(код и наименование направления)
Направленность:	Химическая технология (общий профиль, СУОС)
	(наименование образовательной программы)

1. Общие положения

1.1. Цели и задачи дисциплины

Цель учебной дисциплины - развитие и углубление знаний в области поверхностных явлений, установлении их взаимосвязи с дисперсным состоянием вещества;

анализ возможных превращений и оценку особенности равновесия в гетерогенных дисперсных системах; установление роли поверхностных явлений и дисперсных систем в химикотехнологических процессах.

Задачи учебной дисциплины:

- Освоение основных законов коллоидного состояния вещества;
- Формирование умений использовать в расчетах основные соотношения термодинамики поверхностных явлений, определять основные характеристики дисперсных систем;
- Формирование навыков в ходе освоения методов измерения основных характеристик поверхностных явлений и дисперсного состояния вещества.

1.2. Изучаемые объекты дисциплины

- поверхностные явления;
- дисперсное состояние вещества;
- гетерогенные дисперсные системы

1.3. Входные требования

Не предусмотрены

2. Планируемые результаты обучения по дисциплине

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
ОПК-1	ИД-1опк-1	Знает основные законы поверхностных явлений и дисперсного состояния вещества, используемые в основных химических технологиях.	Знает механизмы химических реакций, происходящих в технологических процессах и окружающем мире, строение веществ, природу химических связей и свойства различных классов химических элементов, соединений, веществ и материалов.	Контрольная работа
ОПК-1	ИД-2опк-1	Умеет изучать и анализировать законы поверхностных явлений и дисперсных систем применительно к технологическим процессам.	Умеет изучать, анализировать, использовать механизмы химических реакций, происходящих в технологических процессах и окружающем мире.	Индивидуальн ое задание

Компетенция Индекиндикат ОПК-1 ИД-3опк-		Планируемые результаты обучения по дисциплине (знать, уметь, владеть) Владеет навыками теоретического и экспериментального	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения Владеет способностью использовать механизмы химических реакций,	Средства оценки Защита лабораторной работы
		исследования дисперсных систем и поверхностных явлений	происходящих в технологических процессах и окружающем мире.	
ОПК-5	ИД-1опк-5	Знает химическое и аналитическое оборудование, применяемое в физико-химических исследованиях, методы обработки результатов экспериментов	Знает цели и задачи проводимых исследований и испытаний; методы проведения экспериментальных исследований, основанные на закономерностях физики, химии, физической химии; методы статистического анализа и обработки результатов эксперимента.	Тест
ОПК-5	ИД-2опк-5	Умеет применять физико- химическое и аналитическое оборудование для изучения поверхностных явлений и дисперсного состояния вещества	Умеет планировать и проводить исследования технологических процессов с использованием экспериментальных методов; осуществлять статистическую обработку результатов экспериментов; формулировать выводы и заключения по проведенным экспериментам.	Защита лабораторной работы
ОПК-5	ИД-3опк-5	Владеет навыками практического использования приборов в определении конкретных поверхностных свойств и дисперсного состояния вещества, обработки и анализа полученных результатов эксперимента	Владеет навыками проведения экспериментальных исследований и испытаний технологических процессов; обработки и анализа полученных экспериментальных данных; составления отчетов по теме или по результатам проведенных экспериментов.	Защита лабораторной работы

3. Объем и виды учебной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 4
1. Проведение учебных занятий (включая проведение текущего контроля успеваемости) в форме: 1.1. Контактная аудиторная работа, из них:	54	54
- лекции (Л)	18	18
- лабораторные работы (ЛР)	16	16
- практические занятия, семинары и (или) другие виды занятий семинарского типа (ПЗ)	18	18
- контроль самостоятельной работы (КСР)	2	2
- контрольная работа		
1.2. Самостоятельная работа студентов (СРС)	54	54
2. Промежуточная аттестация		
Экзамен		
Дифференцированный зачет		
Зачет	9	9
Курсовой проект (КП)		
Курсовая работа (КР)		
Общая трудоемкость дисциплины	108	108

4. Содержание дисциплины

Наименование разделов дисциплины с кратким содержанием	Объем аудиторных занятий по видам в часах			Объем внеаудиторных занятий по видам в часах
	Л	ЛР	П3	CPC
4-й семестр				

Наименование разделов дисциплины с кратким содержанием		ем аудито	Объем внеаудиторных занятий по видам в часах	
1. Поверхностные свойс тва дисперсных систем. Тема	Л 8	ЛР 4	П3 8	CPC 21
1		-		
Тема 1.Классификация поверхностных явлений и дисперсных систем. Геометрия поверхности. Поверхностное натяжение и поверхностная энергия. Классификация поверхностных явлений. Классификация дисперсных систем по агрегатному состоянию, кинетическим свойствам, размеру частиц Тема 2. Основные виды и закономерности адсорбции. Основные понятия и виды адсорбции. Адсорбция на однородной плоскости поверхности раздела фаз. Фундаментальное уравнение Гиббса. Адсорбционные равновесия. Количественные закономерности процессов адсорбции. Уравнение адсорбции Генри, Фрейндлиха, Ленгмюра и их анализ. Полимолекулярная адсорбция. Уравнение БЭТ. Тема. 3. Электрические свойства дисперсных систем. Механизм образования двойного электрического слоя (ДЭС). Термодинамические соотношения между поверхностным натяжением и электрическим потенциалом ДЭС. Электрокапиллярные кривые. Строение ДЭС. Дзета-потенциал. Влияние различных факторов на дзета-потенциал. Строение мицеллы. Тема 4. Адгезия, смачивание и растекание жидкости. Адгезия и работа адгезии. Смачивание и краевой угол. Закон Юнга. Связь работы адгезии с краевым углом. Растекание жидкости. Эффект Марангони. Флотация, основные закономерности.				
2. Методы получения дисперсных систем. Термодинамические, кинетический свойства. Агрегативная устойчивость. Тема 5	10	12	10	33
Тема 5. Дисперсность и термодинамические свойства. Правило фаз Гиббса для дисперсных систем. Влияние дисперсности на внутреннее давление тел. Уравнение Лапласа. Капиллярные явления. Формула Жюрена. Зависимость термодинамической реакционной способности от дисперсности. Уравнение Кельвина-Томпсона. Тема 6Методы получения дисперсных систем. Диспергирование и конденсация. Уравнение Ребиндера. Термодинамические аспекты конденсационного образования дисперсных систем. Тема 7Кинетические свойства дисперсных систем. Общая характеристика свободнодисперсных				

Наименование разделов дисциплины с кратким содержанием		ем аудито і по видам	Объем внеаудиторных занятий по видам в часах	
	Л	ЛР	П3	CPC
систем. Закономерности седиментации в гравитационном и центробежном полях. Условия соблюдения закона Стокса. Броуновское движение и его молекулярно-кинетическая природа. Связь между средним сдвигом частиц и коэффициентом диффузии. Диффузионно-седиментационное равновесие. Седиментационная устойчивость. Тема 8Оптические свойства дисперсных систем. Оптическая неоднородность дисперсных систем. Явление рассеяния света. Уравнение Рэлея. Методы исследования дисперсных систем: ультрамикроскопия, турбидиметрия, нефелометрия. Методы, основанные на рассеянии рентгеновских лучей. Тема 9 Агрегативная устойчивость и коагуляция дисперсных систем. Процессы в дисперсных системах, связанные с агрегативной неустойчивостью. Факторы агрегативной устойчивости. Особенности стабилизации и коагуляции дисперсных систем с различными дисперсными средами. Тема 10 Реологические свойства дисперсных систем. Растворы коллоидных поверхностно-активных веществ.				
ИТОГО по 4-му семестру	18	16	18	54
ИТОГО по дисциплине	18	16	18	54

Тематика примерных практических занятий

№ п.п.	Наименование темы практического (семинарского) занятия
1	Дисперсность вещества. Расчет основных характеристик адсорбционных процессов
2	Электрокинетические явления. Расчет электрокинетического потенциала. Строение мицеллы.
3	Расчет основных характеристик адгезии, смачивания и растекания жидкости.
4	Дисперсность и термодинамические свойства. Методы синтеза дисперсных систем, расчет их основных характеристик.
5	Кинетические и оптические свойства дисперсных систем
6	Агрегативная устойчивость дисперсных систем. Растворы коллоидных ПАВ.

Тематика примерных лабораторных работ

№	Наименование темы лабораторной работы
п.п.	панменование темы лаоораторной раооты

№ п.п.	Наименование темы лабораторной работы
1	Изучение адсорбции поверхностно-активных веществ на границе раздела жидкость-газ
2	Исследование адсорбции на границе раздела твердое тело-жидкость
3	Определение критической концентрации мицеллообразования в растворах ПАВ
4	Определение половинного времени коагуляции белого золя
5	Седиментационный анализ суспензий

5. Организационно-педагогические условия

5.1. Образовательные технологии, используемые для формирования компетенций

Проведение лекционных занятий по дисциплине основывается на активном методе обучения, при котором учащиеся не пассивные слушатели, а активные участники занятия, отвечающие на вопросы преподавателя. Вопросы преподавателя нацелены на активизацию процессов усвоения материала, а также на развитие логического мышления. Преподаватель заранее намечает список вопросов, стимулирующих ассоциативное мышление и установление связей с ранее освоенным материалом.

Практические занятия проводятся на основе реализации метода обучения действием: определяются проблемные области, формируются группы. При проведении практических занятий преследуются следующие цели: применение знаний отдельных дисциплин и креативных методов для решения проблем и приятия решений; отработка у обучающихся навыков командной работы, межличностных коммуникаций и развитие лидерских качеств; закрепление основ теоретических знаний.

При выполнении лабораторных работ обучающиеся вырабатывают навыки работы с химическими реактивами, посудой и реактивами. Навыки получения, обработки и представления экспериментальных результатов, формулировки выводов.

По результатам выполненных лабораторных работ студенты оформляют отчёт, применяя теоретические знания.

5.2. Методические указания для обучающихся по изучению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям, лабораторным работам и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

6. Перечень учебно-методического и информационного обеспечения для самостоятельной работы обучающихся по дисциплине

6.1. Печатная учебно-методическая литература

№ п/п	Библиографическое описание (автор, заглавие, вид издания, место, издательство,	Количество экземпляров в
J12 II/II	год издания, количество страниц)	экземплиров в библиотеке
	1. Основная литература	
1	Гельфман М.И. Коллоидная химия / М.И. Гельфман, О.В. Ковалевич, В.П. Юстратов СПб: Лань, 2003.	20
2	Фролов Ю. Г. Курс коллоидной химии. Поверхностные явления и дисперсные системы: учебник для вузов / Ю. Г. Фролов Москва: Альянс, 2004.	113
3	Щукин Е.Д. Коллоидная химия : учебник для вузов / Е.Д.Щукин, А.В.Перцов, Е.А.Амелина Москва: Высш. шк., 2006.	31
	2. Дополнительная литература	
	2.1. Учебные и научные издания	
1	Краткий справочник физико-химических величин / Под ред. А. А. Равделя, А.М. Пономаревой М.: Аз-book, 2009.	58
2	Лабораторные работы и задачи по коллоидной химии : учебное пособие для вузов / Ю. Г. Фролов [и др.] Москва: Химия, 1986.	6
3	Малышева Ж.Н. Теоретическое и практическое руководство по дисциплине Поверхностные явления и дисперсные системы: учебное пособие для вузов / Ж.Н. Малышева, И. А. Новаков Волгоград: Политехник, 2007.	47
4	Мягченков В. А. Поверхностные явления и дисперсные системы: учебное пособие для вузов / В. А. Мягченков М.: КолосС, 2007.	10
5	Фридрихсберг Д. А. Курс коллоидной химии: учебник / Д. А. Фридрихсберг Санкт-Петербург [и др.]: Лань, 2010.	11
	2.2. Периодические издания	
	Не используется	
	2.3. Нормативно-технические издания	
	Не используется	
	3. Методические указания для студентов по освоению дисципли	ІНЫ
1	Козлова Г. А. Физическая и коллоидная химия. Поверхностные явления / Г. А. Козлова, Е. А. Тиньгаева Пермь: Издательство ПНИПУ, 2012.	100
2	Тиньгаева Е. А. Физическая и коллоидная химия. Дисперсные системы / Е. А. Тиньгаева, Г. А. Козлова, Н. Ю. Уханова, Н. Б. Ходяшев Пермь: Издательство ПНИПУ, 2014.	100
	4. Учебно-методическое обеспечение самостоятельной работы сту	дента
1	Индивидуальные задания по коллоидной химии: методические указания и контрольные задания для самостоятельной работы студентов Пермь: Изд-во ПНИПУ, 2018.	100

6.2. Электронная учебно-методическая литература

Вид литературы	Наименование разработки	Ссылка на информационный ресурс	Доступность (сеть Интернет / локальная сеть; авторизованный / свободный доступ)
Методические указания для студентов по освоению дисциплины	Физическая и коллоидная химия. Дисперсные системы. Учебно- методическое пособие./ сост. Тиньгаева Е.А., Козлова Г.А., Н.Ю. Уханова, Н.Б. Ходяшев. Пермь, Изд-во ПНИПУ, 2014. – 90 с.		сеть Интернет; авторизованный доступ
Методические указания для студентов по освоению дисциплины	Физическая и коллоидная химия. Поверхностные явления. Учебнометодическое пособие./ сост. Козлова Г.А., Тиньгаева Е.А., Пермь, Изд-во ПНИПУ, 2012. – 79 с.	https://elib.pstu.ru/docview/? fDocumentId=4439	сеть Интернет; авторизованный доступ
Учебно- методическое обеспечение самостоятельной работы студентов	Индивидуальные задания по коллоидной химии: методические указания и контрольные задания для самостоятельной работы студентов / сост.: Е. А. Тиньгаева, Г. А. Козлова, Н. Б. Ходяшев, Е. А. Фарберова; М-во образования и науки Рос. Федерации, Перм. нац. иссле		сеть Интернет; авторизованный доступ

6.3. Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Вид ПО	Наименование ПО			
Операционные системы	Windows 10 (подп. Azure Dev Tools for Teaching)			
Офисные приложения.	Microsoft Office Professional 2007. лиц. 42661567			
ПО для обработки изображений	Adobe Photoshop CS3 Russian (ПНИПУ 2008 г.)			
Прикладное программное обеспечение общего назначения	Dr.Web Enterprise Security Suite, 3000 лиц, ПНИПУ ОЦНИТ 2017			

6.4. Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

Наименование	Ссылка на информационный ресурс
--------------	---------------------------------

	1			
Наименование	Ссылка на информационный ресурс			
База данных Scopus	https://www.scopus.com/			
База данных Web of Science	http://www.webofscience.com/			
База данных компании Springer Customer Service Center GmbH	http:/link.springer.com/ http://www.springerprotocols.com/ http://materials.springer.com/ http://zbmath.org/ http://npg.com/			
База данных научной электронной библиотеки (eLIBRARY.RU)	https://elibrary.ru/			
Научная библиотека Пермского национального исследовательского политехнического университета	http://lib.pstu.ru/			
Электронно-библиотечеая система Лань	https://e.lanbook.com/			
Электронно-библиотечная система IPRbooks	http://www.iprbookshop.ru/			
Виртуальный читальный зал Российской государственной библиотеки	https;//dvs.rsl.ru/			
Информационные ресурсы Сети КонсультантПлюс	http://www.consultant.ru/			
Электронная библиотека диссертаций Российской государственной бибилиотеки	http://www.diss.rsl.ru/			
Информационно-справочная система нормативно- технической документации "Техэксперт: нормы, правила, стандарты и законодательства России"	https://техэксперт.сайт/			

7. Материально-техническое обеспечение образовательного процесса по дисциплине

Вид занятий	Наименование необходимого основного оборудования и технических средств обучения	Количество единиц
Лабораторная работа	Аппарат для встряхивания АВУ-6	1
Лабораторная работа	Весы аналитические ВЛР-200, 1 шт.; WA34, 1 шт.; ВЛТК-500,	3
Лабораторная работа	Весы торсионные ВТ-500	2
Лабораторная работа	Компьютерный блок управления инв. № 013638415	1
Лабораторная работа	Перемешивающее устройство LS 210	1
Лабораторная работа	рН-метр рН-150 м	2
Лабораторная работа	Учебно-лабораторный комплекс «Химия» (модуль «Электрохимия»),	5
Лабораторная работа	Фотоэлектроколориметр КФК-2МП	1
Лекция	Ноутбук Toshiba Satellite P100-257	1
Практическое занятие	Ноутбук Toshiba Satellite P100-257	1

8. Фонд оценочных средств дисциплины

Описан	в отдельном	документе
--------	-------------	-----------

Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

Пермский национальный исследовательский политехнический университет

<u>Химико-технологический факультет</u> (наименование факультета) кафедра химии и биотехнологии (наименование кафедры, ведущей дисциплину) .					
Приложение к раб	очей программе дисциплины				
«Коллоидная химия» (наименование дисциплины по учебному плану)					
	имическая технология» д и наименование)				
Направленность образовательной программы:	Химическая технология полимерных материалов и энергетических конденсированных систем Химическая технология неорганических веществ Химическая технология природных энергоносителей и углеродных материалов				

(наименование профиля//специализации)

бакалавриат (бакалавриат / магистратура / специалитет)

заочная

Пермь 2023

Уровень высшего образования:

Форма обучения:

Данное приложение является неотъемлемой частью рабочей программы дисциплины РПД «Коллоидная химия» и включает дополнения новых пунктов, связанные со спецификой заочной формы обучения, остальные пункты и таблицы остаются без изменений.

Таблица 3.1 – Объём и виды учебной работы

		Трудоёмкость, ч		
№ п.п.	Виды учебной работы	всего	номер семестра 5	
1	2	3	4	
1	Аудиторная (контактная работа)	14	14	
	- лекции (Л)	4	4	
	- лабораторные работы (ЛР)	4	4	
	-практические занятия (ПЗ)	4	4	
	Контроль самостоятельной работы (КСР)	2	2	
2	Самостоятельная работа студентов (СРС)	90	90	
	- изучение теоретического материала	50	50	
	- подготовка к аудиторным занятиям	8	8	
	- подготовка к практическим занятиям и лабораторным работам	8	8	
	- подготовка отчетов по лабораторным работам	8	8	
	- выполнение контрольной работы	16	16	
3	Итоговый контроль (промежуточная аттестация обучающихся) по дисциплине: зачёт	4	4	
4	Трудоёмкость дисциплины, всего: в часах (ч) в зачётных единицах (ЗЕ)	108 3	108	

4.1. Контрольная работа (домашняя)

Тематика контрольных работ:

- -построить изотерму адсорбции в координатах уравнения Ленгмюра, определить константы в уравнении графическим методом;
- -определить величину максимальной адсорбции при полном заполнении поверхности сорбента;
- -построить изотерму адсорбции в координатах уравнения Фрейндлиха и определить константы уравнения;
- -построить график зависимости времени защитного действия от длины слоя сорбента $t=f\left(L\right) ;$
 - -определить по графику длину неиспользованного (мертвого) слоя;

- -определить по графику потерю времени защитного действия $t_{\rm n}$;
- -по графической зависимости определить длину работающего слоя сорбента и коэффициент защитного действия;
 - -рассчитать скорость движения фронта сорбции U;
 - -рассчитать равновесную статическую активность сорбента a_p ;
 - -вычислить поверхностное натяжение раствора по методу Ребиндера;
 - -вычислить поверхностное натяжение по уравнению Шишковского;
 - -определить поверхностное натяжение по формуле Жюрена;
- -определить агрегатные состояния дисперсной фазы и дисперсионной среды для предложенных систем;
 - -составить уравнение реакции и формулу мицеллы гидрозоля;
 - -определить заряд частицы золя;
 - -назвать основные элементы мицеллы гидрозоля;
- <u>-п</u>о приведенным данным построить кривую седиментации, рассчитать радиус частиц дисперсной фазы;
- -построить дифференциальную кривую распределения по размерам частиц водных суспензий различной дисперсности;
 - -вычислить порог коагуляции золя электролитом;
 - -определить коагулирующую способность иона;
 - -рассчитать порог коагуляции, руководствуясь правилом Шульце-Гарди.

Указания по подготовке контрольной работе.

Для подготовки контрольной работы преподаватель на первом занятия выдает студенту задания из представленного перечня. Контрольная работа выполняется самостоятельно в соответствии с Методическими рекомендациями по самостоятельной работе.

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Пермский национальный исследовательский политехнический университет»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения промежуточной аттестации обучающихся по дисциплине «Коллоидная химия»

Приложение к рабочей программе дисциплины

Направление подготовки: 18.03.01 Химическая технология

Направленность (профиль) <u>Химическая технология природных энергоносителей и</u>

образовательной программы: углеродных материалов

Химическая технология переработки древесины

Квалификация выпускника: «Бакалавр» **Выпускающая кафедра:** <u>Химические технологии</u>

Форма обучения: Очная, заочная

Курс: 2 Семестр: 4

Трудоёмкость:

Кредитов по рабочему учебному плану: 3 ЗЕ Часов по рабочему учебному плану: 108 ч.

Форма промежуточной аттестации:

Зачет: 4 семестр

Пермь 2023

Фонд оценочных средств для проведения промежуточной аттестации обучающихся для проведения промежуточной аттестации обучающихся по дисциплине является частью (приложением) к рабочей программе дисциплины. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине разработан в соответствии с общей частью фонда оценочных средств для проведения промежуточной аттестации основной образовательной программы, которая устанавливает систему оценивания результатов промежуточной аттестации и критерии выставления оценок. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине устанавливает формы и процедуры текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине.

1. Перечень контролируемых результатов обучения по дисциплине, объекты оценивания и виды контроля

Согласно РПД освоение учебного материала дисциплины запланировано в течение одного семестра (1-го семестра учебного плана) и разбито на 2 учебных модуля. В каждом модуле предусмотрены аудиторные лекционные, лабораторные и практические занятия, а также самостоятельная работа студентов. В рамках освоения учебного материала дисциплины формируется компоненты компетенций знать, уметь, владеть, указанные в РПД, которые выступают в качестве контролируемых результатов обучения по дисциплине (табл. 1.1).

Контроль уровня усвоенных знаний, освоенных умений и приобретенных владений осуществляется в рамках текущего, рубежного и промежуточного контроля при изучении теоретического материала, выполнении индивидуальных заданий, сдаче отчетов по лабораторным работам, рубежного тестирования и зачета. Виды контроля сведены в таблицу 1.1.

Таблица 1.1. П				~	
	eneueul vout	nonunuemety	10 O THE TATE OF A	оп вицепло	писшиппице
таолица т.т. тт	CDC ICHB RUHI	DOMIND & CMIDIA	pesymbiatob o	O y TCHIMA HO	дисциплинс

Контролируемые результаты обучения по дисциплине (ЗУВы)		Вид контроля					
		Текущий		Рубежный	Промежуточный		
	ИЗ	ОЛР	ТО	T	Зачет		
Усвоенные	знания						
3.1 Знать основные законы поверхностных	И3	ОЛР	TO	T1	На основании		
явлений и дисперсного состояния вещества,	1-4	1-5	1-5	T2	текущего и		
используемые в основных химических					рубежного		
технологиях					контроля		
3.2 Знать химическое и аналитическое оборудование,	ИЗ	ОЛР	TO	T1	1		
применяемые в физико-химических исследованиях,	1-4	1-5	1-5	T2			
методы обработки результатов экспериментов							
Освоенные умения							
У.1 Уметь применять физическо-химические	ИЗ	ОЛР	TO	T1			
методы анализа для изучения поверхностных	1-4	1-5	1-5	T2			
явлений и дисперсных систем							
У.2 Уметь применять физико-химическое и		ОЛР	TO				
аналитическое оборудование для изучения		1-5	1-5				
поверхностных явлений и дисперсного состояния							
вещества							
Приобретеннь	іе влад	ения		•			
В.1 Владеть навыками теоретического и	ИЗ	ОЛР	TO				
экспериментального исследования дисперсных систем	1-4	1-5	1-5				
и поверхностных явлений							
В.2 Владеть навыками практического использования	ИЗ 1-4	ОЛР	TO				
приборов в определении конкретных поверхностных		1-5	1-5				
свойств и дисперсного состояния вещества, обработки							
и анализа полученных результатов эксперимента							

ТО – коллоквиум (теоретический опрос); ИЗ –(индивидуальное задание; ОЛР – отчет по лабораторной работе; Т/КР – рубежное тестирование (контрольная работа).

Итоговой оценкой достижения результатов обучения по дисциплине является промежуточная аттестация в виде зачета, проводимая с учетом результатов текущего и рубежного контроля.

2. Виды контроля, типовые контрольные задания и шкалы оценивания результатов обучения

Текущий контроль успеваемости имеет целью обеспечение максимальной эффективности учебного процесса, управление процессом формирования заданных компетенций обучаемых, повышение мотивации к учебе и предусматривает оценивание хода освоения дисциплины. В соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования — программам бакалавриата, специалитета и магистратуры в ПНИПУ предусмотрены следующие виды и периодичность текущего контроля успеваемости обучающихся:

- входной контроль, проверка исходного уровня подготовленности обучаемого и его соответствия предъявляемым требованиям для изучения данной дисциплины;
- текущий контроль усвоения материала (уровня освоения компонента «знать» заданных компетенций) на каждом групповом занятии и контроль посещаемости лекционных занятий;
- промежуточный и рубежный контроль освоения обучаемыми отдельных компонентов «знать», «уметь» заданных компетенций путем компьютерного или бланочного тестирования, контрольных опросов, контрольных работ (индивидуальных домашних заданий), защиты отчетов по лабораторным работам, рефератов, эссе и т.д.

Рубежный контроль по дисциплине проводится на следующей неделе после прохождения модуля дисциплины, а промежуточный — во время каждого контрольного мероприятия внутри модулей дисциплины;

- межсессионная аттестация, единовременное подведение итогов текущей успеваемости не менее одного раза в семестр по всем дисциплинам для каждого направления подготовки (специальности), курса, группы;
 - контроль остаточных знаний.

2.1. Текущий контроль усвоения материала

Текущий контроль для оценивания знаниевого компонента дисциплинарных частей компетенций (табл. 1.1) в форме защиты индивидуальных заданий и отчетов по лабораторной работе и коллоквиумов (ТО) проводится по каждой теме. Результаты по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

2.1.1. Защита индивидуальных заданий

Всего запланировано 4 индивидуальных задания.

Защита индивидуального задания проводится индивидуально каждым студентом. Типовые темы индивидуального задания, шкала и критерии оценки приведены в РПД.

Типовое задание ИЗ1.

Адсорбция

В таблице представлена зависимость массы вещества (мг) адсорбированного 1 г адсорбента (А) при температуре 298 К от равновесного парциального давления Р (Па).

По представленным данным:

- 1. Постройте изотерму адсорбции A =f (P);
- 2. Постройте полученную изотерму в координатах уравнения Ленгмюра, определите константы в уравнении графическим способом.
- 3. Определите величину максимальной адсорбции при полном заполнении поверхности сорбента.
- 4. Определите величину адсорбции при давлении Р_і
- 5. Постройте полученную изотерму в координатах уравнения Фрейндлиха и определите константы.

No॒	Адсорбент	Адсорбат	$P_{i} \cdot 10^{-4} (\Pi a)$	$P \cdot 10^{-3} (\Pi a)$	А (мг)
				0,05	136,5
1	АУ	бензол	1,25	0,085	163,8
				0,149	183,3
				0,849	214,5
				1,599	280,8

Типовое задание ИЗ2.

Дисперсные системы

При медленном введении вещества B в разбавленный раствор вещества A возможно образование гидрозоля вещества C (вещество A – в избытке). Напишите формулу мицелл и укажите знак электрического заряда коллоидных частиц этого золя.

№	A	В	С
1	MgSO ₄	КОН	$Mg(OH)_2$

Типовое задание ИЗЗ.

Седиментация

1. Построить кривую распределения суспензии цинка в ацетоне, пользуясь следующими экспериментальными данными:

Время оседания, τ , c	60	180	300	600	900	1800	3600
Масса осадка, мг	33,5	40,5	44,5	46,5	48,0	49,0	50,0
	. 3			_	3	. 3	

Плотность ZnO $-5,66\cdot10^3$ кг/м³, плотность ацетона $\rho_o=0,79\cdot10^3$ кг/м³, вязкость среды $\eta=1\cdot10^{-5}$ Па·с, высота столба жидкости $H=10\cdot10^{-2}$ м.

Типовое задание ИЗ4.

Коагуляция

1. В три колбы налито по $0.1\,$ дм 3 золя гидроксида железа. Для того, чтобы вызвать коагуляцию золя, потребовалось добавить в первую колбу $0.01\,$ дм 3 1 н раствора NH_4Cl , в другую $-0.063\,$ дм 3 $0.01\,$ н раствора Na_2SO_4 , в третью $-0.037\,$ дм 3 $0.001\,$ н раствора Na_3PO_4 . Вычислить порог коагуляции каждого электролита и определить знак заряда частиц золя.

2.1.4. Защита лабораторных работ

Всего запланировано 4 лабораторных работы. Защита лабораторной работы проводится индивидуально каждым студентом в виде коллоквиума. Типовые темы лабораторных работ, шкала и критерии оценки приведены в РПД. Результаты защиты лабораторных работ по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

2.2. Рубежный контроль

Рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений и приобретенных владений дисциплинарных частей компетенций (табл. 1.1) проводится согласно графика учебного процесса, приведенного в РПД, в форме рубежного тестирования после изучения каждого модуля учебной дисциплины.

2.2.1. Рубежное тестирование

Согласно РПД запланировано 2 рубежных тестирования после освоения студентами учебных модулей дисциплины. Первое T1 по модулю 1 «Поверхностные свойства дисперсных систем», второе T2 – по модулю 2 «Методы получения дисперсных систем».

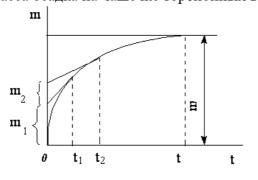
1.2.2. Типовые задания рубежного тестирования

Типовые залания Т1:

		Timobbi	с эндиний тт	•	
 Вещество, ад адсорбтив 	дсорбированное на 2) адсорбат	• •	-	азывается 4) адсорбер	
2. Поточникати	voji moonyoji ovoon	Syrry year thatar	Taanus		
	ной теорией адсор 2) Ленгмюра		теорию 4) Дуби	інина	
1) $V=2g(\rho - \rho_0)$ 3) $\sigma_0 - \sigma = b \ln(10)$	(1+aC)	2) A = 4) A = 1	$A_{\infty}\cdot K\cdot P/(1+K)$ KP^{n}	·P)	
	газа или пара все	м объёмом твер	дого веществ	ва или жидкости	
называется5. 5 г сорбента г/см³. Количест	3	см ³ раствора. Ко	4) кап онцентрация	иллярной конденсаци вещества в пробе измен	н ей нилась на 0, 05
1) 0,1 г	2) 1 г	3) 10 г	4) 2 Γ		
6. В уравнении	Ленгмюра 2	$A = A_{\infty} \cdot \frac{K \cdot C}{1 + K \cdot C}$	символом А	$_{\infty}$ ·обозначена	
3) предельная	орбции адсорбция	2) начальная 4) концентра	адсороция ция ПАВ		
Ионы п Pb ²⁺ - эз 1) противоион 3) противоион	²⁺] 2(n - x)NO ₃ -} ^{2x} го гы диффузионног гы адсорбционног стический потенци	го слоя го слоя	4) агрегат	алопределяющие ионі 4) <i>ф</i>	p]
9. {[m (FeS) n I	$[e^{2+}] 2(n - x)C1 $ 2			, ,	
Заряд частицы	*				
1) x+	2) +	3) 2x+	4) 2+	5) $3x+$	
10. Колло имеет	оидная частица, по	лученная взаимо	действием се	рной кислоты с избытк	ом хлорида бария,
	1) частичны	ій отрицательнь	ый заряд 2)	не имеет заряда	
	/ =	положительно	, ,	ояжена отрицательно	
	ствие между моле	•	-	вы называется	
1) адгезией 2) абсорбцией 3) адсорбцией 4) когезией					
, <u>.</u>	е, определяющее н	,		ивности о	
12. Выражения	е, определяющее г	$1) - d\sigma/dc$		σ/dc	
		3) $lim(-d\sigma/a)$	(c) 4) li		
		Типовые	е задания Т 2	2:	
1. Характерны	м признаком дисп	ерсных систем я	является		
	1) гет	ерогенность	2) r	омогенность	
2 G	, .	ойчивость	,	остоянство состава	
2. Среди переч	исленных вещести	в дисперсной си	стемой не яв	ляется	

2) соляная кислота

4) дым


1) пыль

3) углекислотная пена

- 3. Размер частиц дисперсной фазы в грубодисперсных системах составляет 2) 10^{-5} - 10^{-3} cm 1) 10⁻⁷-10⁻⁵ см 3) 10^{-9} - 10^{-7} cm **4)** более 10⁻³см
- 4. Коллоидная система получается в результате реакции
- 1) $Fe(NO_3)_3 + NaOH \rightarrow$
- 2) Sr(OH)₂+ HCl \rightarrow

3) Cl₂+ KOH \rightarrow

- 4) MnO₂+ HCl \rightarrow
- 5. К методам диспергирования не относится:
- 1) использование электрической дуги
- 2) применение ультразвука
- 3) использование дробилок и мельниц
- 4) замена растворителя
- 6. Оптические свойства коллоидных систем характеризует уравнение
- 3) Шишковского 1) Рэлея 2) Ленгмюра
- 4) Фрейндлиха
- 7. В выражении закона Бугера Ламберта Бера $I_{np} = I_0 e^{-k l c}$ буквой l обозначена
- 1) концентрация
- 2) интенсивность падающего света
- 3) интенсивность прошедшего через золь света
- 4) толщина слоя золя
- 8. Скорость седиментации не зависит
- 1) от размеров частиц
- 2) от плотности дисперсионной среды
- 3) от вязкости дисперсионной среды
- 4) от поверхностного натяжения дисперсионной среды
- 9. Найти среднеквадратичный сдвиг частиц гидрозоля ΔX за время $\tau = 10$ с, если коэффициент диффузии D = $4.29 \cdot 10^{-12} \text{ м/c}^2$
- 1) 3· 10⁻³ M
- 2) 2· 10⁻⁸ M
- 3) 9,3· 10⁻⁶ м
- 4) 4.8· 10⁻⁸ M
- 10. Газовые эмульсии это дисперсные системы, в которых
- 1) дисперсионная среда жидкая, дисперсная фаза газообразная
- 2) дисперсионная среда газообразная; дисперсная фаза твердая
- 3) дисперсионная среда и дисперсная фаза жидкие
- 4) дисперсионная среда газообразная; дисперсная фаза жидкая
- 11. На рисунке максимальная масса осадка на чашечке торсионных весов соответствует отрезку

- $1) m_1$
- 2) m₂
- 3) m
- 4) 0 t
- 5) $0 t_1$

- 12. Золи это дисперсные системы, в которых
- 1) дисперсионная среда жидкая, дисперсная фаза газообразная
- 2) дисперсионная среда газообразная; дисперсная фаза твердая
- 3) дисперсионная среда жидкая; дисперсная фаза твердая
- 4) дисперсионная среда и дисперсная фаза жидкие

Результаты рубежных тестирований по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

2.3. Процедура промежуточной аттестации без дополнительного аттестационного испытания

Допуск к промежуточной аттестации осуществляется по результатам текущего и рубежного контроля. Условиями допуска являются успешная сдача всех лабораторных работ и положительная интегральная оценка по результатам текущего и рубежного контроля.

Зачет по дисциплине выставляется по итогам проведенного текущего и рубежного контроля, которые обеспечивают необходимый уровень сформированности всех заявленных

3. Критерии оценивания уровня сформированности компонентов и компетенций

3.1. Оценка уровня сформированности компонентов компетенций

При оценке уровня сформированности компетенций в рамках выборочного контроля при зачете считается, что полученная оценка за компонент проверяемой компетенции обобщается на соответствующий компонент всех компетенций, формируемых в рамках данной учебной дисциплины.

Общая оценка уровня сформированности всех компетенций проводится путем агрегирования оценок, полученных студентом за каждый компонент формируемых компетенций, с учетом результатов текущего и рубежного контроля в виде интегральной оценки по 4-х балльной шкале. Все результаты контроля заносятся в оценочный лист и заполняются преподавателем по итогам промежуточной аттестации.

Форма оценочного листа и требования к его заполнению приведены в общей части ФОС образовательной программы.

При формировании итоговой оценки промежуточной аттестации в виде зачета используются типовые критерии, приведенные в общей части ФОС образовательной программы.